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Cryogenic treatment (1) 

• In-depth research began c.1980’s, with advances
in computer controlled technology

• Utilises phase transformations at cryogenic
temperatures to provide improved mechanical
and tribological properties

• Usually performed after quenching but prior to
tempering, as a supplementary step to a
conventional heat treatment (CHT)

• Industrial use concerted around tools, bearings,
gears

• Process conducted industrially using a ‘cryo-
chamber’ or ‘cryo-processor’ with LN2



Cryogenic treatment (2) 

• Three main stages: cooling, soaking, 
heating

• Three main treatment temperature 
regimes, by which cryogenic treatments 
are classified:
• Cold treatment (CT) ≥ 189K
• Shallow cryogenic treatment (SCT) 

189 – 113K 
• Deep cryogenic treatment (DCT) 113 

– 77K
• The latter, DCT, is the one of interest 

here and commercially 



Advantages 

• Increased dimensional stability 

• Increased hardness 

• Increased wear resistance 

• Even reports of increased fatigue life 

Disadvantages 

• Mechanisms of microstructural change not
currently well understood

• Contradictory results in literature

• Most commonly treated are tool steels,
containing high quantities of alloying
elements

• Long process times (DCT ~24 hrs)

• Not a ‘one-process suits all’

Cryogenic treatment (3)



Mechanisms of microstructural change in hardenable Fe-C alloys

• Conversion of retained austenite 𝛾𝑅𝐴 to martensite 𝛼′

• Increased dispersion and number of secondary carbides

• ‘Low-temperature conditioning’ of RT formed martensite

• Formation of nano-sized precipitates

Cryogenic treatment (4)



Stages of tempering in martensitic Fe-C alloys 

Stage Occurrence Expected 
temperature range 
(K)

I & II Pre-precipitation processes 
(segregation of carbon and its 
subsequent arrangement)

< 373

III Formation of transition 
carbides (η, ϵ) 

353 - 473

IV Decomposition of retained 
austenite 𝛾𝑅𝐴 to cementite and 
ferrite (θ and α)

513 – 593

V precipitation of cementite θ 533 - 623

Preciado, M. & Pellizzari, M. (2014) J Mater Sci, 49, 8138-8191.
Cheng. L et al., (1988) Met Trans A, 19A, 2415-2426.



Kinetics of thermal decomposition of martensite during tempering 

• Activation energies of the stages of
tempering determined by a Kissinger-like
analysis:
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• 𝑅 = Universal Gas constant (J mol-1 K-1) , 𝐸𝑎 =
activation energy (J mol-1), 𝜙 = heating rate (K min-1)

• 𝑇𝑓′ = temperature of which a certain fraction of the
phase transformation is complete, usually taken as
the maxima of the phase transition studied

• Isochronal annealing

Mittemiejer, E.J. (1992) J of Mat Sci. 3977-3987.
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Rationale for this research

• Effects of prior austenitising conditions on deep cryogenic heat treatment yet to
be clinically analysed

• Most hardened steels applied in the tempered state – lots of studies on the
tempering of Fe-C alloys, but the effects of an industry standard DCT cycle on
subsequent tempering behaviour yet to be evaluated

• Views to optimise DCT cycles for specific applications and desired properties



Material 

• En 31 bearing steel (AISI 52100, DIN 100Cr6)

Heat Treatment  

• 3 sets of austenitised samples. 30 mins at one of 1123 K, 1223 K, 
1323 K 

• All subsequently oil quenched

• As-quenched (AS-Q) Control samples vs quenched + DCT 
samples (Q + DCT) 

Deep cryogenic treatment  

• Cryogenic Treatment Services Ltd, Newark-On-Trent (-2020)

• 24 hrs soaking at 93 K, cooling and re-heating to 93 K at rates   
<1 K min-1

Experimental methodology 

Element Wt.% 

C 0.95 – 1.10

Cr 1.20 – 1.60

Mn 0.40 – 0.70

Si 0.10 – 0.35

S 0.050 max

P 0.040 max

Fe Remaining 



Characterisation
• This study

• DSC

• Microscopy (SEM)

• XRD (pre-DCT)

• Mechanical tests – Vickers hardness testing
• Future

• Dilatometry – further study precipitation behaviour

• Tribology – wear tests

• XRD (post DCT)

• Neutron diffraction

Experimental methodology 



AS-Q structures

Results – Microstructures

Q + DCT structures

Etchant: 2% Nital Etchant: 4% Picral

1123K 1223K 1323K Austenitising temperature 
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Results – XRD
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𝛾𝑅𝐴

78.6
21.4



Results – Macro-hardness

• 10 measurements for each sample, HV10

• Relatively large SD due to domain of
grains encountered (austenite,
martensite)

• 1123K samples experienced mean
increase in hardness of 1.72% with DCT

• Mean hardness of 1223K austenitised
samples increased by 10.53% with DCT
and 1323K samples by 7.19%

• More analysis required on whether
𝛾𝑅𝐴 to 𝛼′ is responsible or conditioning of
RT formed 𝛼′ at DCT temperatures
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Results – Calorimetry 1223K Samples 
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Effect of heating rate 
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Results – Calorimetry – Stage I & II
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Results – Calorimetry – Stage IV
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Results – Kinetic analysis

Activation energies, Ea (𝐤𝐉𝐦𝐨𝐥−𝟏)

Stage Occurrence Literature Values 1123K AS-Q 1123K Q+DCT 1223K AS-Q 1223K Q+DCT 1323K AS-Q 1323K Q+DCT

I & II Pre-precipitation 
processes (segregation 
of carbon and its 
subsequent 
arrangement)

83 & 79 [1]
55 - 78 [2]
111 & 80 [3]

- - 29 32 29 31

III Formation of transition 
carbides (η, ϵ) 

111 [1]
89-99 [2]

To be inferred from dilatometry 

IV Decomposition of 
retained austenite 𝛾𝑅𝐴
to cementite and ferrite 
(θ and α)

132 [1 & 3]
115-134 [2]

129 121 134 134 122 133

V precipitation of 
cementite θ

203 [1 & 3]
185-282 [2]

To be inferred from dilatometry 

[1] Cheng. L et al., (1988) Met Trans A, 19A, 2415-2426. [2] Preciado, M. & Pellizzari, M. (2014) J Mater Sci, 49, 8138-8191. [3] Van Genderen M.J. et.al., (1996) Met and Mat Trans A, 28A, 545-561.  



Conclusions 

• DCT does not transform all retained austenite 𝛾𝑅𝐴 to martensite 𝛼′ but has converted some of the phase when compared
to AS-Q samples evidenced by DSC

• Post-DCT XRD required to evaluate quantify extent of transformation during DCT

• Hardness improvements suggestive of retained austenite 𝛾𝑅𝐴 to martensite 𝛼′, but further metallography needed for
verification

• Activation energies determined for stage I & II during tempering show poor linear regressions – broad DSC signals and fast
heating rates

• DCT treated samples present a higher activation energy than AS-Q samples austenitised at 1223K and 1323K, suggesting less
favourable sites available for C atoms to segregate to in DCT samples

• Stage III analysed by calorimetry but broad transformation peaks hinder accurate identification of the position of Tf’ –
dilatometry required

• Activation energies determined for stage IV (decomposition of 𝛾 𝑅𝐴) agree well with literature values and the value of
diffusion of C in austenite (128 kJ mol-1) 1

• DCT of 1123K austenitised samples reduced activation energy required to decompose austenite, suggestive of increased transition
carbides, 1223K & 1323K DCT samples activation energy increased suggestive of austenite stabilisation

• Stage V (precipitation of cementite from transition carbides) not observed during calorimetry – dilatometry required

1 

1. Preciado, M. & Pellizzari, M. (2014) J Mater Sci, 49, 8138-8191.



• Calorimetry 

• Study enthalpies of transitions 

• Dilatometry 
• Effects of a DCT (93 K 24 hrs) cycle studied by dilatometry 
• Length changes during the stages of tempering help elucidate precipitation stages 
• Compliment DSC results

• In-situ XRD
• Diffraction studies in-situ after a DCT (93 K 24 hrs) cycle 
• RT to 673 K to investigate changes in strain state, lattice parameters and phases 

• In-situ Neutron Diffraction 
• Neutron diffraction at ISIS Engin-X (postponed May 2020 & March 2021)
• Again track changes in strain state, lattice parameters and phases 

Future Work



Thank You  

The End 


